Extraction properties of 99m Tc from irradiated High-density MoO₃ Pellets solution

<u>Akira SHIBATA¹</u>, Takuya ISHIDA¹, Takayuki SHIINA², Masaaki KOBAYASHI³, Masakazu TANASE², Yoshiaki KATO¹, Akihiro KIMURA¹, Akio OHTA², Asaki YAMAMOTO³, Yasumasa MORIKAWA³, Kaori NISHIKATA¹, Nobuhiro TAKEUCHI² and Kunihiko TSUCHIYA¹

1 : Japan Atomic Energy Agency, 4002 Narita, Oarai, Higashiibaraki, Ibaraki 311-1393, Japan 2 : Chiyoda Technol Corporation, 3681 Narita, Oarai, Higashiibaraki, Ibaraki 311-1313, Japan 3 : FUJIFILM RI Pharma Co. Ltd., 453-1 Shimo-okura, Matsuo, Sammu, Chiba 289-1592, Japan

> Tel:+81-29-266-7373 , Fax:+81-29-266-7913 E-mail : shibata.akira@jaea.go.jp

^{99m}Tc, a daughter nuclide of ⁹⁹Mo, is commonly used as a radiopharmaceutical in the field of nuclear medicine. In case of Japan, all of ⁹⁹Mo are imported from foreign countries. Therefore, R&D for domestic production has been being carried out in the JMTR. And the (n, γ) method was selected from viewpoints of safety, nuclear proliferation resistance and waste management. In this study, experiments of ⁹⁹Mo/^{99m}Tc production were carried out for the purpose to enhance recovery yields of ^{99m}Tc and the experimental results were evaluated.

The high-density MoO_3 pellets were fabricated by the Plasma Sintering Method, and were irradiated in the Hydraulic conveyer (HYD) which is the neutron irradiation equipment positioned at the reactor core of the Kyoto University Reactor (KUR). The irradiated MoO_3 pellets were transferred from the KUR to the JMTR Hot Laboratory and were dissolved with 6M-NaOH solution in the Lead Cell. The solvent extraction method with MEK was used to extract ^{99m}Tc from ⁹⁹Mo/^{99m}Tc solution.

In the experiments, dissolution, separation, extraction and concentration techniques were evaluated to enhance recovery yields of ^{99m}Tc. The maximum recovery yields as high as 80% was achieved. The impurities in ^{99m}Tc solution were also evaluated and were efficiently low. And it is concluded that this method would be suitable for the radiopharmaceutical production.

In future, the solvent extraction demonstration tests will be carried out with MoO_3 pellets irradiated in JMTR.